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a b s t r a c t

We present new developments of the evolutionary algorithm USPEX for crystal structure prediction and
its adaptation to cluster structure prediction. We show how to generate randomly symmetric structures,
and how to introduce ‘smart’ variation operators, learning about preferable local environments. These and
other developments substantially improve the efficiency of the algorithm and allow reliable prediction
of structures with up to ∼200 atoms in the unit cell. We show that an advanced version of the Particle
SwarmOptimization (PSO) can be created on the basis of ourmethod, but PSO is strongly outperformed by
USPEX. We also show how ideas frommetadynamics can be used in the context of evolutionary structure
prediction for escaping from local minima. Our cluster structure prediction algorithm, using the ideas
initially developed for crystals, also shows excellent performance and outperforms other state-of-the-art
algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary algorithms are routinely used for global optimiza-
tion. Recently, such algorithms [1–6] became widely used (e.g.,
[7–9]) in the field of crystal structure prediction (CSP), where one
has to find a crystal structure with the lowest free energy1 for a
given chemical composition at given pressure–temperature con-
ditions (for an overview, see [12,13]). The First Blind Test for inor-
ganic crystal structure prediction [12], conducted in 2010, showed
that the evolutionary algorithm USPEX [3–5] is the most efficient
and reliable method. In this paper, we present new developments
of USPEX, extending its applicability to different types of systems
and improving its efficiency for large systems.

The basic idea of the evolutionary approach is to start from a set
of structures, called population, and evolve them using selection

∗ Corresponding author at: Department of Geosciences, Stony Brook University,
Stony Brook 11794-2100, NY, USA. Tel.: +1 6315766330; fax: +1 631 6328240.

E-mail addresses: andriy.lyakhov@gmail.com, andriy.lyakhov@stonybrook.edu
(A.O. Lyakhov).
1 It is possible to optimize properties other than free energy, and USPEX supports

such optimization [10,11]. For clarity, all explanations here assume free energy as
fitness (i.e., search space = energy landscape).

and specially designed variation operators—i.e. recipes for creating
offspring from parent structures. Variation operators, such as
heredity (creates a child structure from two or more parents)
and mutation (creates a child from a single parent), must retain
some essential memory of parent structures in the offspring, while
introducing new structural features. The flowchart of a typical
evolutionary algorithm is shown in Fig. 1. The initial population
is usually created randomly, unless some information about the
ground state of the system is known, such as likely candidate
structures, or lattice parameters, space group, etc. All structures
created by the algorithm have to be locally optimized (i.e. relaxed)
at a chosen level of theory—e.g., empirical potentials, density
functional theory, hybrid functionals, or QuantumMonte Carlo.

As the system size increases, certain difficulties arise related to
the very nature of the task that is being solved [5]. Amajor problem
for most population-based global optimization methods is the risk
of being trapped in some local minimum instead of the global one.
The number of local minima rises exponentially with the system
size and so does (for any algorithm) the risk of trapping, thus one
has to develop techniques to avoid this. In evolutionary algorithms,
such ‘genetic drift’ [14] is caused by the fact that the current best
solution tends to create children that are similar to it. However,
this behaviour is another side of learning, which drives the initial
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Fig. 1. Flowchart of a typical evolutionary algorithm.

random population to lower-energy structures. Thus we have to
solve the drift problemwithout sacrificing the learning, if possible.
A few key ideas of how to avoid sticking to a local minimum were
already proposed in [5]. In this paper, we develop them further.

Exponential increase of the combinatorial complexity of the
problem leads to the decline in the quality and diversity of ran-
dom structures with the increasing number of degrees of freedom.
To deal with it we proposed a new initialization scheme [5], the
idea being to reduce the number of degrees of freedom by ran-
domly applying symmetry to randomly generated atomic coordi-
nates. To that end, we used additional translational symmetries
and pseudosymmetries (‘subcells’ and ‘pseudo-subcells’) [5], and
here we add to this trick the full apparatus of 230 space groups.
This has the advantages of being unbiased, providing very diverse
structures and covering the search space better. In this procedure,
during relaxation the initial symmetry of the structures can in-
crease or decrease (to allow symmetry breaking, we apply slight
perturbations to the atomic positions2). Variation operators also
break symmetry and enable totally new structures with very dif-
ferent symmetries to emerge. It is often beneficial to add random
symmetric structures in every generation. Just improving initial-
ization does not fully solve the problems of ‘‘curse of dimensional-
ity’’. One has to improve the variation operators—so that not only
good structures are given preference for creating offspring, but also
good fragments of structures are identified and nurtured. We ap-
ply these ideas both to 3D-crystals and to clusters, and in both areas
the method presented here outperforms other approaches.

We have also experimented with the adaptation of ideas from
other global optimization techniques. We show that with minor
programming effort the USPEX method can be transformed into
a new form of the Particle Swarm Optimization (PSO) [15–17]

2 It makes most sense to introduce these perturbations after the structure is
already relaxed, i.e. close to a local minimum or a saddle point.

method. We also implemented the ideas of metadynamics [18]
into our algorithm in the form of so called ‘antiseeds’ to avoid the
genetic drift. We discuss how these ideas affect the performance of
the algorithm.

The remainder of this paper is organized as follows. In Section 2
we discuss the new initialization scheme. ‘Smart’ evolutionary
operators are described in Section 3. In Section 4 we discuss the
implementation of the PSO algorithm and the use of ideas of meta-
dynamics in our evolutionary approach. An algorithm for cluster
structure prediction is described in Section 5. Section 6 presents
numerical results to measure performance of the ideas introduced
here versus other methods. For completeness, Section 7 mentions
other developments that have been implemented in the USPEX
code and described elsewhere. Finally, we summarize the paper
with conclusions.

2. Improved initialization

A fully random initialization of the first generation is a poor
choice for large systems, as was shown and discussed in [5]. For
large systems it leads to nearly identical ‘glassy’ structures that
have similar (high) energies and low degree of order [19]. From
such starting conditions, it is difficult to obtain well ordered crys-
talline states. We proposed [5] a novel initialization scheme that
involved cell splitting—i.e. reduced the number of degrees of free-
dom (only at the initialization stage) by introducing additional
translational symmetry or pseudosymmetry. Here we extend this
idea by using 230 space groups, which allows one to produce a
diverse initial population of ordered and chemically reasonable
structures. The idea to use symmetric structures in the first gen-
eration has led to success before [5,17,20,21], and with the devel-
opment presented here reaches its logical completion.

To generate a random symmetric structure, one of 230 space
groups (or one of a user-provided list of groups) compatible with
the number of atoms in the unit cell, is selected. A unit cell shape
consistent with that symmetry is then produced, and rescaled to
have the prespecified initial volume. An atom is randomly placed
on a general Wyckoff position and is multiplied by space group
symmetry operations. If two or more symmetry-related atoms are
closer to each other than a user-defined threshold, wemerge them
into one atom on a special Wyckoff position by averaging their
coordinates. This is equivalent to projecting the initial site onto
a symmetry element (point, axis, plane), or, equivalently—into a
high-symmetry Wyckoff position and multiplying it afterwards;
see Fig. 2. At each step wemake sure that the remaining number of
atoms is compatible with a chosen space group, which sometimes
requires discarding an atom with its images. Adding one by one
new atoms on general positions (some of which are then moved
into special positions using the above procedure), we ensure that
no atoms, including symmetrically unrelated ones, are too close to
each other. To have exactly the needed number of atoms in the
unit cell, some atoms may have to be placed on special Wyck-
off positions with the right multiplicity. Unlike implementations
[17,21], this general and unbiased procedure not only fairly sam-
ples all possible space groups, but also naturally tends to place
atoms on special positions, and ensures reasonable distances be-
tween all atoms. If symmetrically related atoms are closer than the
user-defined threshold, they are merged into a special position; if
symmetrically non-equivalent atoms are too close to each other,
the structure is discarded without relaxation.

Relaxation (local optimization) does not break symmetry, but
can increase it to a supergroup. To allow the possibility of sym-
metry breaking, we apply a small random displacement to atomic
positions. We should also add that variation operators break sym-
metry, which removes any bias that may have been caused by the
initial choice of symmetries.
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Fig. 2. Example of merging atoms onto special Wyckoff positions.

Since the implementation of symmetric random structures
substantially improved the algorithm, we also found it in most
cases beneficial to include a fewnew symmetric random structures
in every generation to improve the diversity of the population and
provide new structural motifs to be explored by the algorithm.

3. Smart variation operators

Variation operators are the heart of an evolutionary algorithm.
They are used to produce new structures out of those that were
already sampled and drive the search towards the globally optimal
structure. The random nature of variation operators is both a
blessing and a curse. On the one hand, randomness is required
for diversity of the population and is essential for exploring the
whole search space. It also ensures unbiasedness and slows down
genetic drift [14]. That is why random mutations and random
selection of spatially coherent slabs for heredity are preferred. On
the other hand, completely random variation operators may be
inefficient when applied to large systems [5]. Therefore, we have
to design ‘smart’ operators that retain a degree of randomness,
but are directed by the system itself to choices that have a higher
probability to improve the fitness. The use of fingerprint theory
for improving the conventional variation operatorswas thoroughly
explored in [5]; here we build up on these developments and
discuss a novel operator, that we call soft-mode mutation (or
‘softmutation’).

3.1. Improved heredity using order-fitness correlation

In the heredity operator, spatially coherent slabs are taken from
parent structures and then combined into a single child struc-
ture [3]. Earlier [5] we proposed to use the concept of local or-
der to improve variation operators. Order parameter quantifies the
degree of symmetry of the environment of a given atom, and one
can also define the average degree of order of a fragment of struc-
ture. Thus, the less distorted and less defective parts of the struc-
ture can be potentially chosen for participating in heredity (and
the more defective ones—in mutation). If distortions or defects are
favourable, preferences should be reversed. To incorporate both
situations in a seamless manner, we calculate the correlation be-
tween the average atomic order of the structure and its energy.
Then, depending on the strength of (anti)correlation, the extent
to which the order parameter influences variation operators is de-
fined. When there is a positive (negative) correlation, we make Ns
attempts to randomly cut slabs from each parent and among these
slabs choose the least (most) ordered one:

Ns =
L

Lchar + (L − Lchar) · cos


π
2 r
2 (1)

fromwhichNs is rounded to the nearest integer. Here r ∈ [−1; 1] is
Pearson product-moment correlation coefficient, L is the thickness
of the unit cell in the direction in which we cut it for heredity and
Lchar is the characteristic length that can be defined, e.g., as half of
the cubic root of the average atomic volume. Therefore Ns changes
from 1 in the absence of correlation (r = 0) to L/Lchar for perfect
(anti)correlation; see Fig. 3.

3.2. Softmutation

In our previous work [5] we have briefly described softmuta-
tion, a special coordinate mutation operator. The idea is to move
the atoms along the eigenvectors of the softest modes, since low-
frequency eigenmodes correspond to directions of low curvature
of the energy surface and likely also low energy barriers [22]. As
Roy et al. have shown [23], crossing low energy barriers will, on
average, lead into the basin of attraction of lower-energy localmin-
ima compared to crossing high energy barriers. The physical idea
behind such mutation is to move the system into a new structure
across the lowest energy barrier. Such moves enable a very effec-
tive local and semilocal exploration of the energy landscape. The
power of this operator is illustrated in Fig. 4 (and also Fig. 8 later in
the text).

For this operator, the amplitude of displacement is a user-
defined parameter, usually set to ∼1.5 times the average bond
length. If the displacement brings atoms too close to each other,
the amplitude of displacement is decreased until minimum-
distance constraints are satisfied. If a structure has already been
softmutated, the next lowest-frequency3 mode is used. From a set
of degeneratemodes, only onemode is used; themode degeneracy
is conveniently analyzed using fingerprints [19].

It is important to note that it is not necessary to move the
structure exactly along the mode eigenvector. To overcome the
energy barrier and end up in another minimum, it is enough to
have an approximate direction and sufficiently largemutation am-
plitude to arrive upon relaxation in a new low-energy structure.
Since one does not need an exact and computationally expensive
ab initio dynamical matrix [25] to calculate the phonon modes, we
proposed [5] to construct this matrix from bond hardness coeffi-
cients [26] (and setting atomic masses to unity); at zero wavevec-
tor this dynamical matrix is:

Dαβ (a, b) =


m

∂2

∂α0
a∂βm

b


1
2


i,j,l,n

H l,n
i,j


r l,ni,j − r l,n0 i,j

2
(2)

3 More precisely, one arranges modes in order of increasing square of mode
eigenfrequency (ω2), starting from lowest-w2 and neglecting long-wavelength
acoustic modes.
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Fig. 4. Fully unconstrained variable-cell structure search for boron at 40 GPa with 28 atoms in the unit cell. Softmutation with subsequent relaxation transforms structure
1 into structure 2, which is the global minimum (γ − B28 [8]). One can clearly see that softmutation acts non-trivially and greatly improved the structure. Previous attempts
to find γ − B28 using evolutionary algorithms without fixed cell parameters found this task exceedingly difficult [24].

where coefficients α, β denote coordinates (x, y, z); coefficients
a, b, i, j describe the atom in the unit cell; coefficients l,m, n de-
scribe the unit cell number; r l,ni,j is the distance between atom i in
the unit cell l and atom j in the unit cell n, while r l,n0 i,j is the corre-
sponding bond distance. H l,n

i,j is bond hardness coefficient between
the atom i in the unit cell l and atom j in the unit cell n. Bond hard-
ness coefficients are computed from bond lengths and tabulated
atomic properties—covalent radii and electronegativities [27]. The
approximation (2) corresponds to a central pairwise harmonic po-
tential with a priori determined force constants. In essence, we use
a simple mechanistic analogy: atoms are treated as point particles
andbonds as springs that connect themwith a stiffness determined
by H l,n

i,j .
Such ‘classical’ matrix (1) combines very low computational

costs with surprisingly good results. More accurate (and expen-
sive) ways of constructing the dynamical matrix could be used.
However, this is hardly needed, given the excellent performance of
the approximate treatment. Dynamical matrix can also be used for

another coordinate mutation operator where atoms are moved in
random directions with amplitudes determined by their thermal
ellipsoids, which can also be calculated from Dαβ(a, b). Another
possibility is to create linear combinations (with random weights)
of low-frequency mode eigenvectors.

3.3. Clustering

It is important to keep the population diverse and enable sam-
pling of all low-energy regions of the landscape (energy funnels).
For this, we allow a number of structures, at the same time as di-
verse and as low-energy as possible, to survive into the next gen-
eration. This is achieved by combining fingerprint theory [19] with
an appropriate clustering algorithm. After relaxation, the lowest-
energy part of the population (fraction determined by the user) is
clustered into groups using some value of the distance threshold
dmin: (1) first group is formed from structures with the cosine dis-
tance [19] to the best structure smaller than dmin; (2) this process is
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d = dmin d = 0.5 dmin

ba

Fig. 5. Illustration of clustering into 3 groups. The open square is the best structure in the population, the open diamond is the 2nd best structure. (a) Initial grouping into
two clusters. (b) Correct grouping into 3 clusters.

repeated with all ungrouped structures until all the selected struc-
tures belong to some group.

One could use a fixed user-defined dmin, but we prefer an
automated dynamical criterion. We propose to use a dichotomic
algorithm similar to a binary search in a sorted array. If the number
of such groups differs from the desired, the threshold is modified
by an addition/subtraction of di, and reclustered. Initially di is equal
to 0.5 · dmin and on every reclustering step it is reduced by half.
After we obtain the desired number of groups, the best structure
from every group survives into the next generation; see Fig. 5.

4. Combining ideas of particle swarm optimization (PSO) and
metadynamics with USPEX

4.1. PSO

In the field of crystal and cluster structure prediction, several
approaches proved to be successful for small systems. Particle
SwarmOptimization (PSO), pioneered in this field byBoldyrev [16],
is a special class of evolutionary algorithms where a population
(swarm) of candidate solutions (called ‘‘particles’’) is moved in the
search space according to a few simple formulae. The movements
of the particles are guided by their own best known position in the
search space as well as the entire swarm’s best known position.
Initially, the coordinates x and ‘velocities’ v of the particles
are generated randomly. Then at every step, the positions and
velocities are updated according to the formulae:

v′

i = ω · vi + ϕp · rp · (pi − xi) + ϕg · rg · (g − xi)

x′

i = xi + v′

i .
(3)

Here ω, ϕp and ϕg are weight factors that control the behaviour
and efficiency of the PSO algorithm; rp and rg are random numbers
in the [0; 1] range generated separately for every particle at every
step; pi is the best known position of particle i and g is the best
known position of the entire swarm.

Such an algorithm, despite its simplicity, can work [16]. Key
points to improve with respect to previous implementations [16,
17] are (1) metric of the search space (it is not trivial to map
crystal structure uniquely onto a coordinate system) and (2) ways
to evolve structures in PSO—i.e. variation operators.

Clearly, the cell parameters and atomic coordinates cannot be
used as a correct search space metric. Each structure would then
correspond to an infinite number of representations, or ‘PSO par-
ticles’, since the choice of the unit cell and its origin is not unique.
Therefore evolving the particles by determining the speed vi (3)
directly from coordinates of the atoms and cell parameters of two
structures (as in [17]) will not be productive. Our solution is to use
fingerprint distances [19] as the most natural metric for the en-
ergy landscape, and variation operators of USPEX for evolving the

Fig. 6. Illustration of PSO–USPEX hybrid algorithm for the population of three
individuals (marked by diamonds, squares and circles) after 10 generations. Best
position for every particle ismarked by an enlarged symbol. The best structure is the
big square. The structure shown by circle can be either mutated, create a child with
its historically best position (large circle) or the best position of entire population
(large square) using heredity operatorwith probabilities Pm, Pp and Pg , respectively.

‘PSO particles’ (i.e. structures) as the most efficient unbiased ways
to evolve a population of structures. Namely, the particle is either
mutated (to imitate a random move), or participates in heredity
with its best knownposition or in the hereditywith the best known
population position (to imitate PSOmoves in the direction of these
positions). Instead of applying at each step all moves with some
weights (see Eq. (3)), we apply them one at a time with probabili-
ties described by formulae:

Pm =
ω

Σ
; Pp =

ϕp · rp · Dp

Σ
;

Pg =
ϕg · rg · Dg

Σ
; Σ = ω + ϕp · rp · Dp + ϕg · rg · Dg ,

(4)

where Dp is a fingerprint distance between current and best po-
sition of a particle, while Dg is a fingerprint distance between the
current position of the particle and best known position of the en-
tire population. For more information about the fingerprint metric
space and how to measure the degree of similarity between struc-
tures, see [19]. As in conventional PSO, the position of a particle is
influenced by its historically best known position, and by the glob-
ally (across the whole swarm) best known position—but in differ-
ent ways; see Fig. 6. Our tests, performed on a few diverse systems,
show that this approach (which we call ‘‘cor-PSO’’, i.e. corrected
PSO) is relatively successful, though it cannot compete with the
USPEX algorithm [3,5] for success rate or efficiency.
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4.2. Antiseeds

Metadynamics is an interesting method for sampling the en-
ergy landscape [18]. Its core idea, a form of conformational flood-
ing [28], is to add Gaussian potentials to the real energy landscape
of the system at all sampled points. This is done to discourage the
already sampled regions of the search space from being visited
again, and to explore other regions of the landscape. This idea, com-
binedwith the ideas of USPEX, has led to a very powerful method—
evolutionary metadynamics [29], which combines the strengths of
both approaches. Here we experiment with another idea inspired
by metadynamics: every structure produced by USPEX is stored
together with two parameters—the width and the heights of the
Gaussian. We call such structures ‘‘antiseeds’’.4 The Gaussian pa-
rameters evolve with time and depend on the diversity of the pop-
ulation at themoment of antiseed creation. To create an additional
evolutionary pressure on already sampled structures, the fitness of
structure i is then modified using the formula

fi = fi0 +


a

Wa exp


−
D2
ia

2σ 2
a


, (5)

where fi0 is the initial fitness function (for example, the energy),
summation goes over all stored antiseeds that have heightsWa and
width σa,Dia is the distance between the current structure and an-
tiseed structure in the fingerprint metric space [19]. Parameter σa
is proportional to the average cosine distance between fingerprints
of all pairs of structures in the population (for example, 0.05⟨d⟩).
Parameter Wa is proportional to the fitness variance (for exam-
ple, 0.01σ(E)). As we will show below, antiseeds can enhance the
success rate of the algorithm, especially when applied to systems
with complex multifunnel energy landscapes. Modification of fit-
ness described by Eq. (5) introduces ageing (and, eventually, death)
of individuals in the evolutionary process. As an alternative to age-
ing via antiseeds, one could also introduce the direct ageing of the
surviving structures by lowering their probability to be selecting
as parents every time they survive into the next generation [30].

5. Cluster structure prediction

Cluster (nanoparticle) structure prediction has similarities to
crystal structure prediction, but there are also critical differences.
For consistencywithmostwidely used codes, we treat the problem
with periodic boundary conditions. This gives reliable results if
there is enough ‘vacuum’ around the nanoparticle to eliminate its
interaction with its periodic images. Variation operators do not
act on empty space, and one operates with the ‘‘small cell’’—a
minimal rectangular parallelepiped built around the nanoparticle;
see Fig. 7. The size of this ‘‘small cell’’ is adjusted after relaxation.
The thickness of the vacuum region around the cluster is a user-
defined parameter; more vacuum means more accurate results,
but (for some approaches, such as plane-wave methods) greater
computational costs.

When the cluster is generated or relaxed, we place its centre of
mass to the centre of the unit cell and rotate it so that principal
moment of inertia axis with the highest moment is pointed in
the z-direction. Before performing a ‘cut-and-splice’ heredity, the
nanoparticles are randomly rotated around a randomaxis that goes
through their centre of mass. This idea is similar to random ‘shifts’
for heredity in crystal structure prediction [3]. As in CSP algorithms,
we cut the nanoparticles close to their centres so that not less than
30% of atoms from each parent participate in heredity.

4 By analogy with ‘‘seeds’’—input structures aimed at quickly directing search to
chemically reasonably structures.

Fig. 7. Cluster in a ‘small cell’ surrounded by vacuum (‘big cell’). Variation operators
act within the ‘small cell’. During relaxation atoms are allowed to get outside of the
‘small cell’, in which case the latter is adjusted to include those atoms, and the large
cell is adjusted accordingly, to maintain enough vacuum.

Lattice mutation, an operator introduced for crystal structure
prediction [3], can be adapted for nanoparticles—if one applies it
to the ‘‘small cell’’ described above. This results in deformations of
the nanoparticle, which lead to new structures after the relaxation.

Another change required for cluster structure prediction is a
different formula for the structure fingerprint [19]:

FAiB(R) =


Bj

δ(R − Rij)

4π R2
ijNB∆

(6)

here FAiB describes the fingerprint function of the individual atom
Ai relative to all atoms of the type B surrounding it. The sum runs
over all atoms of the type B, NB is the number of atoms of the type
B in the cluster and Rij is interatomic distance between atoms Ai
and Bj. δ(R − Rij) is a Gaussian-smeared delta-function, absorb-
ing numerical errors and making F(R) a smooth function, which
is then discretized over bins of width ∆. Compared to crystal fin-
gerprint [19], there is no cut-off radius, the volume normalization
disappears and the unity is not subtracted—all these changes be-
ing due to the finite size of clusters, in contrast to the infinite ideal
crystal.

One can calculate the order parameter from fingerprint function
(6) and use order-fitness correlation to improve the heredity oper-
ator in a fashion similar to the algorithm described in Section 3.
Since clusters are oriented according to their moments of inertia,
instead of searching for most (least) ordered cuts in both parent
clusters we randomly select one of the two clusters, and for that
cluster evaluate Ns different cuts. The most (least) ordered cut is
chosen and the second nanoparticle is cut with the same plane, to
obtain the secondpart of the child cluster. The number of evaluated
cuts is calculated using a modified formula (1):

Ns =
(απ2N)1/3

1 +

(απ2N)1/3 − 1


· cos


π
2 r
2 (7)

where N is the number of atoms in the nanoparticle and α is a user
defined parameter (usual values 1–6).

Similarly to the technique described in Section 2, we have
developed a random symmetric initialization scheme also for



A.O. Lyakhov et al. / Computer Physics Communications ( ) – 7

1

2

-1970

-2010

-1980

-1990

-2000

-2020

-2030

-2040

E
nt

ha
lp

y,
 e

V

0 50 100 150 200 250 300 350 400
Structure number

Fig. 8. Calculation for coesite at fixed unit cell. Coesite (structure 2) was obtained from structure 1 by softmutation.

Table 1
Results for different crystalline systems.

System (number of atoms/cell) Antiseeds Symmetric initialization Success rate (%) Average number of structures
until global minimum is found

Dispersion

SrTiO3 (50) − − 94 524 297
TiO2(48) − − 100 41 40
SiO2-coesite (48) + + 100 591 537
Mg24Al16Si24O96 (160) + + 100 296 327

nanoparticles. The user gives a list of possible point groups5 (like,
for example, C2, D6h, etc.) and nanoparticles are generated by
randomly placing atoms inside the ellipsoid inscribed in the ‘‘small
cell’’, and then replicating them using the point group symmetry
operators. We use the same procedure for merging atoms from
general positions into special ones; see Fig. 2. It is very important
to note though, that such initialization scheme does not bias the
algorithm to favour only the symmetric structures. As we will
show in Section 6, the search for the ground state of the Lennard-
Jones cluster with 44 atoms, which has no symmetry at all, is
not slowed down by symmetric initialization (the slight decrease
of the success rate is reversed with the use of antiseeds). The
reason for this is that the initial symmetry is broken by variation
operators already in the second generation. The use of symmetric
initialization creates a diverse and high-quality initial population,
which can evolve even to an asymmetric state. This is very different
from symmetry-enhanced random sampling [21], where the use
of symmetry would completely prohibit any chances of finding an
asymmetric ground state.

We would like to note that there are already efficient evolu-
tionary algorithms for cluster structure prediction (see, for ex-
ample, [31,32] and references therein). Here we describe and
demonstrate a different implementation in the USPEX code, which
expands the capabilities of this approach. The numerical results
below show that for systems tested with our code it outperforms
other general search algorithms and allows efficient search for sys-
tems with over 100 atoms.

5 For random symmetric initialization, if nothing is known about the point group,
for generating each new structure we randomly draw the point group from the list
of all 32 crystallographic point groups and the most common non-crystallographic
groups—pentagonal, decagonal and icosahedral.

6. Numerical results

6.1. Crystal structure prediction

The improved version of the USPEX algorithm was tested on a
range of different systems; see Tables 1 and 2.

SrTiO3 with 50 atoms in the cell was the central test case used
by Lonie and Zurek for their code [6], and the success rate was
7%–12%, which was claimed to be good for a system of this size.
To study the performance of USPEX we performed 35 calculations
with the same interatomic potential model [33] and limiting the
number of generations to 40 and the size of the generation to just
25 structures (to replicate the 1000-structures searches from [6]).
The success rate was 94%, which increased to 100% when we
extended the calculations to 70 generations. The average number
of structures required to obtain the global minimum was just 524.
The ground state (with this potential model) has 5 atoms in the
unit cell. In this calculationwe did not use antiseeds or space group
initialization. We used softmutation and the initial generation was
produced by the cell splitting technique with the split-factors
2 and 4.

The other system tested in [6] was titania (TiO2) with 48 atoms
in the cell. We used the same potential [34] as used in [6]. The
ground state is the rutile structure, which contains 6 atoms in
the unit cell. For this system we performed 73 calculations and
obtained a 100% success rate. The average number of structures
required to obtain the ground state is 41. In this calculation we did
not use antiseeds or space group initialization. Cell splitting (split-
factors 2 and 4) for the first generation and softmutation were
used.

We also tested USPEX on coesite—a polymorph of SiO2 with
48 atoms in the conventional cell. In this calculation we used
the relatively crude fully ionic potential model with shell model
and parameters from [35–37]. As a constraint, we used the
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Fig. 9. Example of the calculation for pyrope (Mg3Al2(SiO4)3) with 160 atoms/cell in a fixed cubic cell. One can clearly see the rapid improvement of the population quality
in the first generations. Also, this figure shows that even after the ground state was found, the algorithm continued to improve the general quality of the population and
found new very low-energy structures.

Table 2
Parameters of evolutionary runs. In our tests we did not attempt to optimize these
parameters and chose parameters based on intuition and experience.

SrTiO3 TiO2 SiO2 Mg24Al16Si24O96

Population size 25 10 40 40
Max. number of generations 40 40 60 30
Number of calculations 35 73 68 64

% of structures generated by:

Heredity 40% 50% 30% 30%
Softmutation 20% 20% 30% 30%
Permutation 20% 10% 10% 10%
Lattice mutation 20% 20% 0% 0%
Symmetric random 0% 0% 30% 30%

experimental unit cell parameters. The success rate is 100% and the
structure is often obtained within a few generations; see Fig. 8.

For the garnet pyrope (Mg24Al16Si24O96) with 160 atoms in the
cubic unit cell, previous version of our algorithm could not find
the ground state, but the new algorithm is able to do so easily.
We performed 64 fixed-cell calculations (30 structures/generation,
with a maximum of 100 generations) and the success rate is 100%.
An example of the calculations, in which ground state was found in
the 6th generation, is shown in Fig. 9. For this calculation we used
all our methodological developments—symmetric initialization,
antiseeds, cell splitting and softmutation.

To our knowledge, USPEX is the first and so far the only
general global optimization code which shows high success rates
for crystalline systems of such size. A plethora of quantitative
improvements of the algorithm described in [5] and in this work
have resulted in a qualitative breakthrough, which allows one to
confidently predict structures containing more than 100 atoms in
the unit cell. The vast difference in performance between different
evolutionary algorithms emphasizes the importance of careful
design of the algorithm and ideas behind it.

6.2. Testing particle swarm optimization (PSO)

To compare the particle swarm optimization regime (cor-
PSO) with conventional USPEX algorithm we did calculations for
MgAl2O4 with 28 atoms/cell and pressure of 100 GPa and TiO2 with
48 atoms/cell. For MgAl2O4, we use Lewis–Catlow potentials [38],
and 20 global optimizations were run for up to 50 generations.

For TiO2, comparison with earlier PSO (CALYPSO code) [17] is
available [39]. We performed 100 global optimizations with each
method (up to 400 structure relaxations per run), and here, in
contrast with results presented in Table 1, no cell-splitting was
used. The results are presented in Table 3. One can see that PSO
is generally less reliable than our conventional algorithm.

For MgAl2O4, PSO without symmetric initialization has low
success rate, but the number of structures required to find the
global minimum in successful calculations was very low. It seems
that PSO algorithm explores the landscape fast in the area where
initial structures were generated, however has difficulties in
exploring the whole search space. Our results show that the
addition of new random symmetric structures to the ‘swarm’ at
every generation substantially improves the efficiency of PSO and
is thus a crucial element of the algorithm ofWang [17]. This is also
confirmed in their latest paper [39].

For crystalline TiO2, the performance of both methods was
similar. Statistics for this system is also available for conventional
PSO algorithm [39], in which the ground state is found after (on
average) 500 structures without the use of symmetry and after
156–400 structures (with the success rate 90%–100%), depending
on the algorithm parameters, when symmetric initialization
was used. This example highlights our improvement of the
conventional PSO methodology.

Latest versions of CALYPSO algorithm [39,48] aimed at correct-
ing the search space metric problem; but, to define search space
metrics, incorrectly [19] chose to use Steinhardt’s orientational or-
der parameter [39] and a parameter [48] analogous to our local or-
der parameter [19], instead of using proper fingerprints [19].

6.3. Tests for cluster structure prediction

For our cluster structure prediction algorithm, we used the
standard testing system—Lennard-Jones clusters, which have been
well studied in the past two decades [31,40–51], and allow
comparison with other algorithms, and the calculations are fast
enough for collecting good statistics, summarized in Table 4. The
results are compared with the state-of-the-art minima hopping
(MH) algorithm [45,46], evolutionary algorithms (EA) from [46,47]
and PSO algorithm [48]. Heredity improved by order was tested for
two cases that required substantial number of structures to obtain
the ground state–LJ44 and LJ75.
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Table 3
Comparison of the PSO (CALYPSO code [48]) and cor-PSO calculations with our evolutionary algorithm USPEX, with and without symmetric initialization.

Success rate (%) Average number of structures until
global minimum is found

Dispersion Average energy of the best
structure in the calculation

MgAl2O4

USPEX sym. 100 1677 1162 −655.0622
USPEX no sym. 100 1403 1011 −655.0622
Cor-PSO sym. 70 1317 783 −654.6132
Cor-PSO no sym. 20 231 110 −653.7715

TiO2

USPEX sym. 100 77 76 −636.8056
USPEX no sym. 100 80 69 −636.8056
Cor-PSO sym. 100 79 78 −636.8056
Cor-PSO no sym. 100 87 78 −636.8056
CALYPSO sym. 90–100 156–400 N/a N/a
CALYPSO no sym. 100 500 N/a −636.8056

Table 4
Statistics for Lennard-Jones clusters with different algorithms. Best algorithms are highlighted in bold.

Symmetric initialization Antiseeds Order Success rate (%) Average number of
structures until global
minimum is found

Dispersion Number of calculations

LJ38 (PSO [48]) + − − 100 605 N/a 100
LJ38(USPEX) + + − 100 35 58 183
LJ38(USPEX) − − − 67 2291 1443 100
LJ38(USPEX) − + − 98 3080 2119 100
LJ38 (EA [46])b − − − N/a 1265 N/a 100
LJ38 (MH [46])b − − − 100 1190 N/a 100
LJ38 (EA [47])b − − − N/a ∼2000a N/a N/a
LJ38 (PSO [48]) − − − 100 1649 N/a 20

LJ44(USPEX) − − − 100 1510 1079 35
LJ44(USPEX) − + + 100 859 524 37
LJ44(USPEX) + + + 100 1129 765 41
LJ44(USPEX) + − − 86 1551 1020 35
LJ44(USPEX) + + − 94 1423 867 35

LJ55 (PSO [48]) + − − 100 159 N/a 100
LJ55(USPEX) + − − 100 11 30 60
LJ55(USPEX) − − − 100 717 407 103
LJ55 (EA [46])b − − − 100 100 N/a 100
LJ55 (MH [46])b − − − 100 190 N/a 100

LJ75 (PSO [48]) + − − 98 2858 N/a 50
LJ75(USPEX) + + + 100 2145 2024 53
LJ75(USPEX) + + − 100 5419 4513 47
a Depending on algorithm parameters, 2000–12000 structures were required to reach the global minimum in [47].
b Results for algorithms [46,47] are given for optimized algorithm parameters. We did not attempt to optimize USPEX parameters and chose them based on intuition

and experience. We could achieve even greater advantage over other approaches with parameter optimization, but did not do this because in realistic calculations (using
quantum-mechanical energy evaluations) one cannot afford parameter tuning.

Lennard-Jones cluster with 55 atoms (LJ55) is a good example of
a moderately large system with a simple landscape: there is only
one deep funnel. Any reasonable global optimization algorithm
will sooner or later find the ground state. The stable structure
has a very high (icosahedral) symmetry and therefore symmetric
initialization greatly improves the efficiency of the algorithm. 103
calculations were done without symmetric initialization and 60
with symmetric initialization (in both cases, we used 40 structures
per population, with a maximum of 40 generations). While both
sets of calculations have a 100% success rate, the ground state is
found on average after relaxing 717 structures without symmetric
initialization (best calculation—94 relaxations) and after just 11
structures with symmetric initialization. In most cases with
symmetric initialization, the ground state was found in the first
generation, in spite of the fact that many point groups (43) were
used for initialization (though not all of these are compatible with
the required number of atoms). The fact that another method with
symmetric initialization [48] requires substantially higher number
of structures to obtain the ground state shows the advantage of our
initialization procedure (see also a result for LJ38 cluster).

LJ44 is an example of a cluster with ground state that has
no symmetry. To find whether symmetric initialization worsens

performance of the algorithm in cases of asymmetric ground states,
we did 35 calculations for this system (100 generations, 40 struc-
tures per generation) with and without symmetric initialization.
The average number of structures required to obtain the global
minimum was 1551 and 1510, respectively, if order-enhanced
heredity is not used, and 859 and 1129, respectively, with such
heredity. Symmetric initialization in this system slightly increases
the chances of sticking to low-energy localminima, i.e. success rate
is slightly decreased. However, the use of antiseeds and order helps
to escape them. All types of calculations showed an overall simi-
larly excellent performance.

LJ38 is a smaller system with a much more complex land-
scape, and is known to pose problems for global optimization
algorithms [44,45]. It has two funnels with minima that are en-
ergetically very close to each other energetically (1E = 0.018
Lennard-Jones units per atom) and the global minimum corre-
sponds to thenarrower funnel. Therefore, it is easy to get trapped in
a local minimum. The use of antiseeds (see Fig. 10 and Table 4) eas-
ily solves this problem and brings the success rate to almost 100%.
If symmetric initialization is used, the problem becomes trivial and
100% success rate is observed.
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Fig. 10. Example of a calculation on LJ38 with the use of antiseeds. The energy of the best structure in every generation is plotted. One can clearly see that the algorithm
does not stick for a long time to any of the candidate minima and quickly finds the ground state.

The first set of calculations was done with antiseeds and with-
out symmetric initialization. 100 calculations were performed,
each with 200 generations and 40 structures per generation. Suc-
cess rate was 98%, the average number of structures required to
find the global minimum was 3080. The structure was guessed
in the initial generation only once. The fastest answer not in the
first generation was obtained after 118 structure relaxations, in
the third generation. Symmetric initialization drastically improves
performance and allows the correct ground state to be found
within just a few generations (after 35 relaxations on average). In
most cases, the ground state was found within three generations.
Calculationswithout antiseeds and symmetric initialization turned
out to have the success rate of just 67%. It is interesting to note
that without antiseeds the speed of finding the new structure is
higher, while success rate is much lower; see Table 1. When the
system is stuck in the wrong funnel, antiseeds will require some
time to push it out of that funnel and thus increase the average
time required to obtain the solution. At the same time, symmet-
ric initialization makes it more likely to sample all good funnels,
which greatly speeds up the calculation. Thus, the combination of
improved initialization and antiseed technique has a dramatic ef-
fect on improving the success rate and the speed of finding the best
structure (up to an order of magnitude). It also allows us to study
larger andmore complex systems. Only in the rare cases, when the
ground state has no symmetry, as in the case of LJ44 nanoparti-
cle, these modifications do not substantially improve (but do not
worsen either) the performance of the algorithm.

LJ75 is a relatively large and exceptionally complex multifunnel
system. Symmetric initialization, antiseeds and heredity with
order parameter prove to be extremely useful in this case, allowing
us to once again outperform the best general global optimization
algorithms [46,48]. We did 45 calculations for LJ75 with up to 300
generations, and 50 structures per generation. The success rate is
100%, the average number of structures required to find the global
minimumwas 2145.Without the use of order, USPEXhas to sample
on average 5419 structures to obtain the ground state.

Twelve tests performed for LJ147 were also all successful (99
structure relaxation before finding the ground state, on average);
however, we have not endeavoured to obtain statistics for that
large system with a relatively simple energy landscape. Both LJ55
and LJ147 have Mackay icosahedra as ground states.

Wewould like to note, that the comparisonwasmadewith gen-
eral cluster structure prediction algorithms. There are algorithms
specifically optimized for Lennard-Jones clusters (for example

[50,51], which utilize the ‘directed mutation’ operator), but in ac-
cordancewith ‘no free lunch’ theorem [52], these are likely towork
poorly for other types of clusters.

7. Other USPEX developments

Some other USPEX developments, not included in this article
but described elsewhere, are:

• A constrained evolutionary algorithm for molecular crystal
structure prediction [53]. It allows the search for optimal
structure with rigid and/or flexible building blocks (molecules),
and proved extremely useful in a number of complex problems
[53,54].

• Evolutionary metadynamics [29]. This is a novel method for
crystal structure prediction, a fusion of metadynamics [18] and
evolutionary approach, which already resulted in predictions of
new synthesizable low-enthalpy carbon allotropes [55].

• Variable-cell nudged elastic band method (vc-NEB) [56]. It
allows one to find idealized phase transition pathways when
both the initial and final states are known.

• Transition path sampling (TPS) algorithm [57], which realisti-
cally models nucleation events necessary for physically mean-
ingful transformation kinetics, and which was recently used
to establish [58] the structure of a new metastable phase of
carbon.

• Variable-composition crystal structure prediction algorithm,
developed in 2008 and briefly described in [12,59]. It allows
one to simultaneously search for all stable compounds and
their structures, provided just the names of the chemical
elements. This method has resulted in startling predictions of
thermodynamic stability of such unusual compounds as Na3Cl,
Na2Cl, Na3Cl2, NaCl3, NaCl7 [60] and Mg3O2 [61].

• An algorithm for predicting surface reconstructions, which will
be released in the near future.

8. Conclusions

We presented new developments in the evolutionary algo-
rithm USPEX [3,5], which improve its efficiency and enable stud-
ies of much larger systems. The symmetry-driven initialization
provides a substantial improvement. Clustering, new variation
operator—softmutation, and improvement of the heredity oper-
ator via fitness-order correlation allow us to sample the search
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space better and drive the search towards more chemically rea-
sonable structures.We also discussed the changes to the algorithm
required for nanoparticle structure prediction, which is now an in-
tegral part of the USPEX code. Problems of the standard PSO algo-
rithm [17] with the definition of the space metric and moves were
discussed and resolved. The corrected PSO algorithm showed rea-
sonable performance, which was, however, not competitive with
our evolutionary algorithmUSPEX. Startingwith the ideas ofmeta-
dynamics, we have implemented the concept of ageing and death
of structures in this evolutionary algorithm through the antiseed
technique. Indeed, ageing and death can help evolution to broader
sample the search space and solve the problem of genetic drift. The
performance of the improved algorithm was demonstrated on a
range of different systems with up to 160 atoms in the unit cell.
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